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Abstract. The transfer matrix method and successive average resistivity criterion for local- 
isation of electronic states have been used to study the Soukoulis-Economou model of the 
one-dimensional system with incommensurate potentials. Numerical studies show that, for 
a case studied extensively, where E, = 1.9 [cos (0.7n) + f cos (1.4n)], all electronic states of 
the middle sub-bands are extended and there is no so-called ‘local mobility edge’. 

1. Introduction 

The recently discovered incommensurate phenomena in some physical systems pos- 
sessing at least two periodicities which are incommensurate with each other have gen- 
erated considerable theoretical interest. Examples of such physical systems are crystals 
containing a charge-density wave (Bruesch etal 1975) and a spin-density wave (Wilson 
etal 1975), mercury chain compounds (Chiang etal 1977) and certain crystals that have 
distortion waves which are incommensurate with the underlying Bravais lattice (de Wolff 
et a1 1981). Incommensurability also plays a role in the electronic properties in high 
magnetic fields (Hofstadter 1976). In some sense, the incommensurate systems are 
intermediate between periodic and random systems. Therefore, unlike amorphous 
materials, there is quasi-periodic long-range order in an incommensurate crystal, which 
gives the crystal very unusual physical properties. The dependence of the electronic 
properties on the type of incommensurate potential has been examined by Llois et a1 
(1984), and the ground-state properties of a tight-binding Hamiltonian with incom- 
mensurate site energy have been extensively investigated-a detailed review article has 
recently been published on this field (Sokoloff 1985). 

The Aubry model, a single-particle tight-binding model with incommensurate poten- 
tial, has been extensively studied (Aubry and Andre 1979, Sokoloff 1985). The Ham- 
iltonian of the model is simply 

m m 

H = C EnJn)(nl+ C t(In>(n + 11 + In + ~ ( n l )  (1) 
n = - m  n = - m  

where In) is the Wannier state, t is the nearest-neighbour hopping integral and the site 
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energy E, = Vcos(Qn). V is the potential strength and the wavevector Q is incom- 
mensurate with n. Although the sinusoidal potential of the single-particle Aubry model 
is not expected to be an exact description of the potential seen by the electrons when the 
crystal is incommensurate, this is a simple and successful model which contains the main 
characters of the incommensurate systems. The Aubry model possesses very interesting 
electronic properties. Azbel(l979) has shown that its energy spectrum has the structure 
of a devil’s staircase, and Bellissard and Simon (1982) have proved that it has an energy 
spectrum which is nowhere dense. Firstly, the whole energy spectrum consists of sub- 
bands, the number of which depends on the wavevector Q. If we increase the resolution 
of the eigen-energy, each sub-band will split into sub-sub-bands. With a further increase 
in the resolution, each sub-sub-band splits again. In this way a hierarchical structure, or 
so-called self-similar structure, of the energy spectrum is shown. Therefore, the spectrum 
is Cantor set like. For the Aubry model, on the contrary, in contrast with a one- 
dimensional random system in which all the states are localised, Aubry and Andre (1979) 
have shown by duality theory that a metal-insulator transition occurs for V = 2t; this is 
called the critical point and means that, for V > 2t, all states are localised and, for V < 2t, 
all states are extended. Consequently, for a fixed V the electronic spectrum has such a 
property that all states have the same degrees of localisation and no mobility edge exists. 
The localisation of the electronic states is independent of the energy. However, it should 
be pointed out that the duality theory is not a rigorous theory with full generality. A 
striking result has been given by Avron and Simon (1982) who prove exactly that, if 
Q/2n is a Liouville number, then for any Q in the region V > 2t the spectrum is singular 
continuous (intermediate state) but not a pure point spectrum (localised state). At the 
same time, Azbel(1979) and Sokoloff (1981) have claimed that in the region V < 2t the 
eigenstates are not all extended and there is a mobility edge. However, Suslov (1982) 
has performed a renormalisation group study to show the absence of such a mobility 
edge. On the contrary, all the numerical results based on different criteria of localisation 
for the Aubry model confirm the conclusion of the duality theory that all states are 
extended in the region V < 2t and there is no mobility edge (Llois et a1 1984, Liu 1988). 
The absence of the mobilityedge, i.e. the fact that the localisation of states isindependent 
of energy, is quite a surprising result. A plausible explanation is that, on the one hand, 
the incommensurate systems are the same as random systems in which the states at the 
tails of the energy band become localised more easily than those at the centre. On the 
other hand, for the Aubry model E, = V cos(Qn), the local site-energy spacings AE, = 
V{cos[Q(n + 1)] - cos(Qn)} become smaller near the band edges and this facilitates 
electronic propagation. It seems that these two opposing tendencies cancel each other 
so that the localisation of electronic states would be independent of the energy and there 
is no mobility edge. To check this physical explanation, Soukoulis and Economou (1982) 
have suggested a modified model which contains two sinusoidal potentials as follows: 

E ,  = V[cos(Qn) + VI cos(2Qn)l. 

It is easy to see that, for this modified model, the superposition of the two sinusoidal 
potentials with different wavevectors destroys the symmetry in the Aubry model and 
makes the local site-energy spacings far smaller at low energies than at high energies. 
Consequently, the eigenstates with higher energies are easier to localise than those with 
lower energies and one can expect the mobility edge to appear. If the mobility edge does 
appear, this would be a very remarkable result because it would be the first time that a 
mobility edge had been found in one-dimensional systems. To justify their conjecture 
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numerically, Soukoulis and Economou calculated the following case which contains nine 
sub-bands: 

E ,  = 1.9[cos(0.7n) + 4 cos(l.4n)l t = l .  (3) 

They found a mobility edge at around E = 0.7 between sub-bands 6 and 7 numbered 
from the low-energy side. All states from the first to sixth sub-bands are extended and 
all are localised from the seventh to ninth sub-bands. We call this mobility edge which 
separates the extended states from the localised states in the whole spectrum the ‘global 
mobility edge’. Using the real-space renormalisation group decimation method and the 
Thouless criterion of localisation, Chao et a1 (1985) have reported that there were two 
global mobility edges in the same system: one between sub-bands 6 and 7 as detected by 
Soukoulis and Economou and an additional one between sub-bands 2 and 3. Moreover, 
they found that in sub-bands 3, 4, 5 and 6 the states in the centre of the sub-band are 
extended but that states in the edges are localised. This means that each of the sub-bands 
3 ,4 ,5  and 6 has two mobility edges which separates extended states from localised states 
in the sub-band. Chao eta1 call these mobility edges which appear in the sub-bands ‘local 
mobility edges’. Zheng and Zhu (1986,1987) by using the criterion of localisation of the 
self-energy convergent lengths have confirmed the existence of the local mobility edges 
of sub-bands 3,4,5 and 6 and the global mobility edge between sub-bands 6 and 7, but 
not the global mobility edge between sub-bands 2 and 3. Furthermore, they conjecture 
that a ‘hierarchical structure of the mobility edges’ may also exist. This means that the 
sub-bands in any hierarchy of the energy spectrum which has a hierarchical structure 
would have their own two local mobility edges. If this conjecture is confirmed, the self- 
similarity, which is characteristic of the energy spectrumof the incommensurate systems, 
would be far more pronounced. It should exist not only in the energy spectrum but also 
in the electronic transport properties. In this paper, we concentrate on a study of the 
existence of the local mobility edge for the Soukoulis-Economou model. 

2. Localisation and mobility edge 

For the Aubry model at the critical point V = 2 the total bandwidth of the energy 
spectrum (measure of spectrum) is zero (Bellissard et al1983). This means, rigorously 
speaking, that the eigenstates no longer condense to form a continuous band. For the 
studied case V = 1.9, although the total bandwidth of the spectrum is not zero, all the 
sub-bands have split up into satellite-like sub-sub-bands. This is also so for the Soukoulis- 
Economou model. Therefore, to locate the sub-sub-bands correctly and to determine 
their widths is extremely important for the study of the electronic localisation of the 
incommensurate systems. 

In the same way as in previous work (Soukoulis and Economou 1982, Chao et al 
1985, Zheng and Zhu 1986) we study the case in equation (3), which contains nine sub- 
bands. To search for the local mobility edges, we investigate the three middle sub-bands 
4 , 5  and 6, for which the bandwidths are wider. Using the method of Dean (1972), we 
locate the sub-bands and calculate the density of states (DOS). The fine structure of the 
three sub-bands is shown in figure 1. The DOSS are calculated for the energy interval 
AE = 0.001 and are in agreement with previous work (Zheng and Zhu 1986). In figure 
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Figure 1. The energy spectrum for (a) sub-band 
4, ( b )  sub-band 5 and (c) sub-band 6. The sub- 
sub-bands labelled A, B,  C and D are the same as 
those listed in table 1 .  

N 

Figure 2. Plots of the logarithmic average res- 
istivity against system length N for (a) sub-band 
4, (b)  sub-band 5 and (c) sub-band6. The fact that 
the average resistivity monotonously decreases 
with increasing N shows that these states are 
extended. 

1, we can see that each sub-band consists of a group of sub-sub-bands, of which the 
broadest is in the centre and is surrounded by other narrower satellite sub-sub-bands. 
The figure seems also to show that the satellite sub-sub-bands have the same DOSS, but 
we should point out that this is not true. The fact that they have the same DOSS is because 
by definition the DOS equals A N / A E  and so by Dean's method we should firstly choose 
an energy interval A E  and then calculate the number of eigenstates A N  in AE.  For the 
present case, every sub-sub-band has almost the same number of eigenstates and the 
real bandwidth of sub-sub-bands, except the middle ones, are smaller than the chosen 
energy interval A E  = 0,001. Therefore the numerical results of the DOSS of most sub- 
sub-bands would have the same values. In fact, the real widths of the sub-sub-bands are 
so different that the differences between the DOSS could even reach seven orders of 
magnitude (table 1). The calculation to determine the widths of the sub-sub-bands 
requires much computer time. We have chosen some satellite sub-sub-bands from each 
sub-band for study. Table 1 shows the numerical results, and we can see that, the further 
the satellite sub-sub-band is from the centre, the narrower is its width. For example, 
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Table 1. Numerical results. 

Sub-band Energy range Sub-sub-band Energy range 

4 From -0.670 to -0.532 { 

{ii 5 From -0.059 to 0.173 

6 From 0.407 to 0.657 

From -0.627552 to -0.627305 
From -0.594841 to -0.594325 
From 0.012055 to 0.012493 
From 0.109797 to 0.111 920 
From0.1374518 to0.1374523 
From 0.1578236830 to 0.1578236834 
From 0.493363 to 0.494902 
From 0.526188 to 0.526686 
From 0.4309058381 to 0.4309058383 
From 0.4079176687646 to 0.4079176687647 

sub-sub-band D of sub-band 6 has a bandwidth of only This suggests to us that, if 
we could not exactly determine the location and width of the sub-sub-bands, we could 
easily choose the incorrect eigen-energies in the gaps, which will lead to inaccurate 
determination of the localisation. 

To study the localisation of the eigenstates for the Soukoulis-Economou model, as 
a powerful criterion of the localisation, we choose the 'successive average resistivity' 
which was developed by one of the present authors and co-workers (Liu and Chao 1986, 
Liu and Riklund 1987). For this purpose, we have to calculate the resistivity which is a 
reliable physical quantity to estimate the localisation and can be examined by exper- 
iment. To calculate the resistivity, the formula of Landauer (1970) combined with the 
transfer matrix method is a very powerful technique and has been used extensively. 

We study a finite incommensurate system containing N + 1 atoms and of length N 
(here the lattice spacing is taken as unity) and embed this finite system as an incom- 
mensurate segment in an infinite, perfectly conducting ordered chain. For this system 
the tight-binding Hamiltonian is 

X (r 

H = 2 E,,ln)(nl + 2 t(ln>(n + 11 + /n + l>(nl) (4) 
,,=-cc n = - x  

where t is the hopping integral and E,, are the site energies. In the perfectly ordered 
chain, we take E,, to be zero; in the embedded incommensurate segment, En is given by 
the Soukoulis-Economou model: E,, = V [cos(Qn) + V1 cos(2Qn)J. 

In the tight-binding base and if we choose t = 1, the equation of motion for the 
amplitudes of the eigenfunction \I, = Z,, a,,ln) is 

( E  - E,)u,, - U,,+, - a,,-l = 0. ( 5 )  
We define the promotion matrix as follows: 

The relation which connects both ends of the incommensurate segment is IN+.) 1 = [E p ( i ) )  [zl) E P N  (;:)e 
(7) 

It can be proved (Liu and Chao 1986, Liu and Riklund 1987) that the Landauer formula 
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for the energy-dependent dimensionless resistance R(E ,  N )  of a finite one-dimensional 
system embedded in a perfectly ordered chain is 

where ( TN)i, is an element of the transfer matrix TN. 

T, = 6 s - ' P N s  

We define the average resistivity as 

where N is the length of the embedded incommensurate segment, i.e. the incom- 
mensurate system studied, R(E,  j )  is the dimensionless resistance which is determined 
by the Landauer formula (8). 

For metallic crystalline solids, pi should be independent of the size of the system; so, 
at zero temperature, p = pi = p = 0. For an extended state in an incommensurate 
system, the reflection coefficient is smaller than unity, and we have 

and 

Therefore, if we successively calculate the respective average resistivities with increasing 
N ,  after reaching some value of Nthe average resistivity will monotonically decrease if the 
state is extended. Quite the contrary is true if the state is localised and the wavefunction is 
exponentially localised. The dimensionless resistance can be written as 

R(E7 N )  = Rhi/l - RN CC exp(N/L) 

where L is the localisation length. Both the resistance and the last term of the average 
resistivity (10) will diverge if N goes to infinity. In this case, if we successively calculate 
the respective average resistivities with increasing N ,  the average resistivities will mono- 
tonically and quickly increase. Consequently, the trend of the successive average res- 
istivities sharply distinguishes the extended state from the localised state and the energy 
gap. We can use this trend of successive average resistivities as the criterion of the 
extended state. Using the successive average resistivity criterion, we have carefully 
investigated the electronic states of the sub-sub-bands listed in table 1 from the edges to 
the centre of bands. It was found that the curves of the successive average resistivities 
for all studied states monotonically decrease after a small value of the system length N ,  
which means that all states in these sub-sub-bands are extended. In figure 2, we have 
plotted several typical graphs of logarithmic average resistivity. The behaviour of the 
curve, which first increases for a small range of system lengths N ,  results from the 
existence of the boundary resistance (Azbel1983). Because there is no localised state to 



Mobility edges in I D  incommensurate systems 2015 

be found, our conclusion is that all states are extended for the three sub-bands studied 
and no so-called local mobility edge exists. 

3. Summary and discussion 

Let us recall all the previous work on the subject under study. Soukoulis and Economou 
(1982) found that all states of sub-bands 1-6 are extended, and there exists a mobility 
edge (a global mobility edge) between sub-bands 6 and 7 at around E = 0.7. By using 
the renormalisation group method, Chao et a1 (1985) confirmed the existence of this 
global mobility edge. Moreover, they reported that in the sub-bands 3 , 4 ,  5 and 6, the 
localisation of electronic states is not unique, but at the same time there exist extended 
states (the centre of each of the sub-bands) and localised states (the edges of each of the 
sub-bands). This means that in each of sub-bands 3,  4, 5 and 6 there are two mobility 
edges which they called local mobility edges. By using the criterion of localisation of the 
self-energy convergent length, Zheng and Zhu (1986,1987) confirmed the existence of 
the local mobility edge. Considering the self-similarity of the energy spectrum (or 
the hierarchical structure of an energy spectrum) for incommensurate systems, they 
furthermore conjectured that a hierarchical structure of the local mobility edge may 
exist. If we review this problem, we see that the existence of the local mobility edge 
relies on the coexistence of two kinds of electronic state with different localisations, i.e. 
extended states and localised states, in each of the studied sub-bands. Therefore the 
investigation of this coexistence is the key to the problem. Because of the Cantor-set- 
like property of the spectrum for an incommensurate system, it is therefore extremely 
important to determine correctly the structure of the sub-bands. For this purpose, 
we determined the bandwidth of sub-sub-bands up to and then examined the 
localisation using the successive average resistivity criterion. The calculation shows that 
all the states of the studied sub-bands are extended. This result implies that there is no 
so-called local mobility edge, which is different from the results of Chao et a1 and Zheng 
and Zhu. The question is how easy is it to see, if we compare the calculations performed 
by the different groups, whether the different conclusions drawn by different workers 
mainly arise from the chosen accuracy of calculation. It is most evident that, for example, 
if we could not exactly locate the satellite sub-sub-bands with an extremely high accuracy, 
it would be possible to take the ‘energy value’ in the band gaps as the eigen-energy. 
Certainly this false ‘eigenstate’ is ‘localised’ by any criterion of localisation; then, mis- 
leadingly, the ‘localised states’ and the extended states would ‘coexist’ in the studied 
sub-band and a so-called local mobility edge would be found. Of course, this is not true. 
We believe that, following an improvement in the chosen accuracy of computation, the 
same conclusion could be drawn even from different calculation methods and criteria of 
localisation. 

Now we give a brief comment on the controversial local mobility edge and the 
hierarchical structure of the local mobility edge conjectured by Zheng and Zhu (1986, 
1987). It is well known that the self-similar or hierarchical structure of the energy 
spectrum for incommensurate systems comes from the quasi-periodicity of the system. 
If we rewrite the wavevector Q = 2na and use for a the continued-fraction expansion, 
then (Y would be approximated by a series of rational numbers. In this way, the incom- 
mensurate systems could be approximated by a series of commensurate systems with 
definite periodicity. These serial periodicities result in self-similarity (or hierarchical 
structure) of the energy spectrum (Liu and Chao 1986). On the contrary, the appearance 
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of localised electronic states is due to multiple scattering of the impurities or aperiodic 
potentials of the studied system, which should not have self-similarity. In our opinion, 
the local mobility edge discussed and the conjectured hierarchical structure appearing 
in the mobility edges lack the necessary physical foundation. Our highly-accurate cal- 
culation has proved this point. 
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